Guess Paper – 2014 Class – IX Subject – MATHEMATICS

TIME -3 HRS MAXIMUM MARKS -90

General Instructions:-

(a) 0

- (i) All questions are compulsory
- (ii) The question Paper consists of 34 questions divided into four sections A, B,C and D
- (iii) Each questions of Section –A, Section-B, Sections of –C and Section –D carries 1 Mark, 2 Marks, 3 Marks and 4 Marks respectively
- (iv) Question No 1 to 8 in section –A are Multiple choice questions ,Where you are to choose one correct option out of the given four
- (v) There is no overall choice however internal choice has been provided in Section –B , Section –C and in Section –D, You have to attempt only one of the alternativesin all such questions
- (vi) Use of CALCULATOR is not permitted

SECTION - A

(Question No 1 to 8 carry 1 Mark each)

p

3.				Zeroes of the Zero Polynomial is		
	(a) 7	(b) 5	(c) 16		(d) 6	
2. The value of the polynomial $p(X) = X^3 - 3X + 5$ at $X = 2$ is						
	(a) $\overline{11}$	(b) <u>9</u>		(c) 13		(d) 15
	14	14		14		14
1.	The Number 1.	in the form of \mathbf{q} where $\mathbf{q} \neq 0$ is				

(c) Any Real number

(d) Not defined

4. If $(x^{57} + 1)$ is divided by (x+1), The remainder is

(b) 1

- (a) 1 (b) 58 (c) 56 (d) 0
- 5. In the given figure AB is a line , The value of X is

http://www.cbseguess.com/

20°

Α

В

(a)

 40^{0}

(b) 20⁰

(c) 40° (d) None

6. In the given figure, if AB II DE, angle BAC = 35° and angle CDE = 53° , angle

DCE is

(a) 35⁰

(b) 53^o

- (C) 98°
- (d) 92°

7. The sides of a triangle are 12 cm, 16 cm and 20 cms, its area is

(a) 48 cm²

(b) 96 cm²

- (C) 120 cm²
- (d) None

8. The side of an isosceles right triangle of hypotenuse 4v2 cm is

(a) 8 cm

(b) 6 cm

- (C) 4 cm
- (d) None

SECTION - B

(Question No 9 to 14 carry 2 Mark each)

9. If $x=2+\sqrt{3}$ find the value of $x+\overline{X}$

Factorise the polynomial: $8x^3-(2x-y)^3$

Find the value of 'K' for which (x-1) is a factor of two polynomial $4x^3+3x^2-4x+K$.

1

If a point C lies between two points A and B such that AC=BC then Prove that AC = $\overline{2}$ AB state the Euclid axiom used for the same.

www.cbseguess.com

Other Educational Portals

www.icseguess.com | www.ignouguess.com | www.aipmtguess.com | www.aieeeguess.com | www.niosguess.com | www.iitguess.com

http://www.cbseguess.com/

13 In fig. If QT PR, angle TQR=40° and angle SPR=30° find x and Y

In fig if PQ||ST, $LPOR=110^{\circ}$ and $LRST=30^{\circ}$ find angle QRS

In which quadrant or on which axis each of the points (-2.4), (3,-1) (-1,0) and (-3,-5) lie. Verify your answer by locating them on Cartesian plane.

Section-C

(Question No 15 to 24 carry 3 Marks each)

$$\frac{5 + 2\sqrt{3}}{7 + 4\sqrt{3}} = a + b\sqrt{3} \text{ find the value of a and b}.$$

16 Simplify:
$$\sqrt[4]{81} - 8 \left(\sqrt[3]{216}\right) + 15 \sqrt{16}$$

17 Factorize x³-3x²-9x-5

$$\frac{1}{27p^3} - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p$$

- Show that 2 and $-\frac{1}{3}$ are the zeroes of the polynomial $3x^3-2x^2-7x-2$ also find the third zero of the polynomial.
- In the given figure , AB \downarrow CD , EF CD and L GED = 128° find LAGE , LGEF and LFGE

- 20 Prove that angles opposite to equal sides of an isosceles triangle are equal.
- In fig. The side QR of Δ PQR is produced to a point S. If the bisectors of LPQR and LPRS meet at point T, then prove that

- If two lines intersect each other, prove that The Vertically opposite angles are equal.
- D is a point on side BC of \triangle ABC such that AD=AC show that AB>AD.
- The sides of a triangular plot are in the ratio 3:5:7 and its perimeter is 300 m. Find its area.

Section -D

(Question No 25 to 34 carry 4 Marks each)

www.cbseguess.com
Other Educational Portals

http://www.cbseguess.com/

25 Represent $\sqrt{5.6}$ on number line.

26 Simplify
$$\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$

Or

Rationalise the denominator : $\frac{1}{\sqrt{5} + \sqrt{6}} - \sqrt{11}$

27 Prove that $(x+y)^3+(y+z)^3+(z+x)^3-3(x+y)(y+z)(z+x)=2(x^3+y^3+z^3-3xyz)$

28 Show that ,if $2(a^2+b^2) = (a+b)^2$ then a=b.

The polynomials $ax^3 + 3x^3 - 3$ and $2x^3 + 5x + a$ leave the same remainder in each case when divided by (x-4), find the value of a

Write the answer of each of the following equation.

- 1. What is the name of horizontal line and vertical lines drawn to determine position of any point in the Cartesian plane.
- 2. What is the name of each part of the plane formed by these two lines.
- 3. Write the name of the point where these two lines intersect.
- 4. Write the coordinates of the Origin
- 31 prove that two triangle are congruent if two angles and the included side of one triangle are equal to two angles and included side of other triangle.
- 32 AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD show that LA>LC and LB>LD.

33. In the given figure , AC= AE , AB = AD and , L BAD=LEAC Show that that BC = DE.

34. in the given triangle ABC, the bisectors of *L* ABC and *LAC*B intersect each other at O show that.

$$L BOC = 90 + \frac{1}{2} L A$$

Paper Submitted By:

Name Yaswant

Email ykr2067@yahoo.com

Phone No. 9532814405