http://www.cbseguess.com/

Guess Paper - 2014
 Class - IX Subject - MATHEMATICS

MAXIMUM MARKS -90

General Instructions:-

(i) All questions are compulsory
(ii) The question Paper consists of 34 questions divided into four sections A, B, C and D
(iii) Each questions of Section -A, Section-B, Sections of -C and Section -D carries 1 Mark, 2 Marks, 3 Marks and 4 Marks respectively
(iv) Question No 1 to 8 in section -A are Multiple choice questions, Where you are to choose one correct option out of the given four
(v) There is no overall choice however internal choice has been provided in Section - B, Section -C and in Section -D, You have to attempt only one of the alternativesin all such questions
(vi) Use of CALCULATOR is not permitted

SECTION - A

(Question No 1 to 8 carry 1 Mark each)

1. The Number $1 . \overline{27}$ in the form of $\frac{p}{q}$ where $q \neq 0$ is
14
14
(c) $\frac{14}{13}$
14
(a) $\overline{\mathbf{1 1}}$
(b) $\overline{9}$
(d) $\mathbf{1 5}$
2. The value of the polynomial $p(X)=X^{3}-3 X+5$ at $X=2$ is
(a) 7
(b) 5
(c) 16
(d) 6
3.

(a) 0
(b) 1
(c) Any Real number
(d) Not defined
4. If $\left(x^{57}+1\right)$ is divided by $(x+1)$, The remainder is
(a) 1
(b) 58
(c) 56
(d) 0
5. In the given figure $A B$ is a line , The value of X is

www.icseguess.com | www.ignouguess.com | www.aipmtguess.com | www.aieeeguess.com | www.niosguess.com | www.iitguess.com

cbse $\wp_{\text {guess }}$
 http://www.cbseguess.com/

20°
A
B
(a)
40^{0}
(b) 20°
(c) 40° (d) None
6.

In the given figure, if $A B \Perp D E$, angle $B A C=35^{\circ}$ and angle $C D E=53^{\circ}$, angle
DCE is

(a) 35°
(b) 53^{0}
(C) 98°
(d) 92°
7. The sides of a triangle are $12 \mathrm{~cm}, 16 \mathrm{~cm}$ and 20 cms , its area is
(a) $48 \mathrm{~cm}^{2}$
(b) $96 \mathrm{~cm}^{2}$
(C) $120 \mathrm{~cm}^{2}$
(d) None
8. The side of an isosceles right triangle of hypotenuse $4 \sqrt{ } 2 \mathrm{~cm}$ is
(a) 8 cm
(b) 6 cm
(C) 4 cm
(d) None

SECTION - B

(Question No 9 to 14 carry 2 Mark each)
9. If $x=2+\sqrt{3}$ find the value of $x+\frac{\mathbf{1}}{\bar{X}}$
$10 \quad$ Factorise the polynomial : $\quad 8 x^{3}-(2 x-y)^{3}$
Find the value of ' K ' for which $(x-1)$ is a factor of two polynomial $4 x^{3}+3 x^{2}-4 x+K$.
If a point C lies between two points A and B such that $A C=B C$ then Prove that $A C=\stackrel{\mathbf{1}}{\mathbf{2}} A B$ state the Euclid axiom used for the same.
www.cbseguess.com
Other Educational Portals
www.icseguess.com | www.ignouguess.com | www.aipmtguess.com | www.aieeeguess.com |
www.niosguess.com | www.iitguess.com

http://www.cbseguess.com/

13
In fig. If QT $P R$, angle $T Q R=40^{\circ}$ and angle $S P R=30^{\circ}$ find x and Y

or

In fig if $P Q\left|\mid S T, \angle P O R=110^{\circ}\right.$ and $\angle R S T=30^{\circ}$ find angle QRS

In which quadrant or on which axis each of the points $(-2.4),(3,-1)(-1,0)$ and $(-3,-5)$ lie. Verify your answer by locating them on Cartesian plane.

Section-C

(Question No 15 to 24 carry 3 Marks each)

If $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=a+b \sqrt{3}$ find the value of a and b.
Simplify : $\sqrt[4]{81}-8(\sqrt[3]{216} \quad)+15 \sqrt{16}$

Factorize $x^{3}-3 x^{2}-9 x-5$
or
$27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$

18
Show that 2 and $-\frac{\mathbf{1}}{\mathbf{3}}$ are the zeroes of the polynomial $3 x^{3}-2 x^{2}-7 x-2$ also find the third zero of the polynomial.

http://www.cbseguess.com/

21 at point T, then prove that LQTR $=\frac{\mathbf{1}}{\mathbf{2}}$ LQPR

22
If two lines intersect each other, prove that The Vertically opposite angles are equal.
D is a point on side $B C$ of $\triangle A B C$ such that $A D=A C$ show that $A B>A D$.

Section -D

(Question No 25 to $\mathbf{3 4}$ carry 4 Marks each)
www.cbseguess.com
Other Educational Portals
www.icseguess.com | www.ignouguess.com | www.aipmtguess.com | www.aieeeguess.com |
www.niosguess.com | www.iitguess.com

http://www.cbseguess.com/

Simplify $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
Or

1

Rationalise the denominator : $\sqrt{5}+\sqrt{6}-\sqrt{11}$
27
$(x+y)^{3}+(y+z)^{3}+(z+x)^{3}-3(x+y)(y+z)(z+x)=2\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$

Show that, if $2\left(a^{2}+b^{2}\right)=(a+b)^{2}$ then $a=b$.

29
The polynomials $\mathrm{ax}^{3}+\mathbf{3} \mathrm{x}^{\mathbf{3}}-\mathbf{3}$ and $\mathbf{2 x} \mathrm{x}^{\mathbf{3}}+\mathbf{5 x}+\mathrm{a}$ leave the same remainder in each case when divided by ($x-4$), find the value of a

30 Write the answer of each of the following equation.

1. What is the name of horizontal line and vertical lines drawn to determine position of any point in the Cartesian plane.
2. What is the name of each part of the plane formed by these two lines.
3. Write the name of the point where these two lines intersect.
4. Write the coordinates of the Origin

31 prove that two triangle are congruent if two angles and the included side of one triangle are equal to two angles and included side of other triangle.
$32 A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral $A B C D$ show that $L A>L C$ and $L B>L D$.

33. In the given figure $, A C=A E, A B=A D$ and,$\angle B A D=\angle E A C$ Show that that $B C=D E$.

34. in the given triangle $A B C$, the bisectors of $\angle A B C$ and $\angle A C B$ intersect each other at O show that.
$L B O C=90+\frac{\mathbf{1}}{\mathbf{2}} L A$

Paper Submitted By:

Name Yaswant
Email ykr2067@yahoo.com
Phone No. 9532814405

